

General Certificate of Education (A-level)
June 2012

Mathematics

MPC1

(Specification 6360)

Pure Core 1

Mark Scheme

the www.mymathscloud.com

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334).

Registered address: AQA, Devas Street, Manchester M15 6EX.

MMM. My Maths Cloud Com

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

				MPC1 - AQA GCE Mark Scheme 2012
PC1				MPC1 - AQA GCE Mark Scheme 2012 . The marks Cloud Comments
Q	Solution	Marks	Total	Comments
1	$\frac{5\sqrt{3} - 6}{2\sqrt{3} + 3} \times \frac{2\sqrt{3} - 3}{2\sqrt{3} - 3}$	M1		
	(Numerator =) $30 - 15\sqrt{3} - 12\sqrt{3} + 18$	m1		$correct (= 48 - 27\sqrt{3})$
	(Denominator = $12 - 9 =$) 3	B1		must be seen as denominator
	$\left(\frac{48-27\sqrt{3}}{3}\right)=16-9\sqrt{3}$	A1	4	CSO; accept $16 + -9\sqrt{3}$
	Total		4	
2(a)(i)	$y = \frac{4}{3}x - \frac{7}{3}$	M1		$y = \pm \frac{4}{3}x + k$ or $\frac{\Delta y}{\Delta x}$ with 2 correct points
	\Rightarrow grad $AB = \frac{4}{3}$	A1	2	condone slip in rearranging if gradient is correct; condone 1.33 or better
(ii)	y = 'their grad' $x+cand attempt to use x = 3, y = -5$	M1		or $y5 = $ 'their grad $AB'(x-3)$ or $4x-3y=k$ and attempt to find k using $x=3$ and $y=-5$
	$y+5 = \frac{4}{3}(x-3)$ or $y = \frac{4}{3}x - \frac{27}{3}$	A1		correct equation in any form but must simplify — – to +
	4x - 3y = 27	A1	3	integer coefficients in required form eg $-8x + 6y = -54$
(b)	$4x - 3y = 7 \text{ and } 3x - 2y = 4$ $\Rightarrow 8x - 9x = 14 - 12 \text{ etc}$ $x = -2$	M1 A1		must use correct pair of equations and attempt to eliminate x or y (generous)
	y = -5	A1	3	or $D(-2,-5)$
	·	1 ,	1	and t 2 2t 2 into 4 2 7
(c)	4(k-2)-3(2k-3)=7		ļ	sub $x = k - 2$, $y = 2k - 3$ into $4x - 3y = 7$
(c)	$4(k-2)-3(2k-3)=7$ $4k-8-6k+9=7$ $\Rightarrow k=-3$	M1 A1	2	and attempt to multiply out with all k terms on one side (condone one slip)

			1011	PC1 - AQA GCE Mark Scheme 2012
C1 Q	Solution	Marks	Total	PC1 - AQA GCE Mark Scheme 2012 $\frac{1}{2}$ 1
3(a)(i)	$p(-1) = (-1)^3 + 2(-1)^2 - 5(-1) - 6$	M1	1000	p(-1) attempted not long division
	$p(-1) = -1 + 2 + 5 - 6 = 0 \Rightarrow x + 1 \text{ is a factor}$	A1	2	CSO; correctly shown = 0 plus statement
(ii)	Quad factor in this form: $(x^2 + bx + c)$	M1		long division as far as constant term or comparing coefficients, or $b = 1$ or $c = -6$ by inspection
	$x^2 + x - 6$	A1		correct quadratic factor
	[p(x)=](x+1)(x+3)(x-2)	A1	3	must see correct product
(b)	$p(0) = -6 ; p(1) = -8$ $\Rightarrow p(0) > p(1)$	M1 A1	2	both p(0) and p(1) attempted and at least one value correct AG both values correct plus correct statement involving p(0) and p(1)
(c)	y -3 -1 2 x	M1 A1 A1	3	cubic with one max and one min $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	Total		10	

(ii) (V =	Solution $x^2 + 3x^2 + xy + xy + 3xy + 3xy$ $6x^2 + 8xy = 32$ $\Rightarrow 3x^2 + 4xy = 16$ $\Rightarrow 3x \left(\frac{16 - 3x^2}{4}\right)$ or $= 3x^2 \left(\frac{16 - 3x^2}{4x}\right)$	Marks M1 A1 M1	Total 2	MPC1 - AQA GCE Mark Scheme 2012. Comments correct expression for surface area $2(3x^2 + xy + 3xy) = 32 \text{ etc}$ AG be convinced
Q $4(a)(i) 3x^2$ (ii) $V = 0$	$x^{2} + 3x^{2} + xy + xy + 3xy + 3xy$ $6x^{2} + 8xy = 32$ $\Rightarrow 3x^{2} + 4xy = 16$ $\Rightarrow 3x \left(\frac{16 - 3x^{2}}{4}\right) \mathbf{or} = 3x^{2} \left(\frac{16 - 3x^{2}}{4x}\right)$	M1 A1		$2(3x^2 + xy + 3xy) = 32 \text{ etc}$ AG be convinced
4(a)(i) $3x^2$ (ii) $(V = $	$x^{2} + 3x^{2} + xy + xy + 3xy + 3xy$ $6x^{2} + 8xy = 32$ $\Rightarrow 3x^{2} + 4xy = 16$ $\Rightarrow 3x \left(\frac{16 - 3x^{2}}{4}\right) \mathbf{or} = 3x^{2} \left(\frac{16 - 3x^{2}}{4x}\right)$	M1 A1		$2(3x^2 + xy + 3xy) = 32 \text{ etc}$ AG be convinced
(ii) (V =	$6x^{2} + 8xy = 32$ $\Rightarrow 3x^{2} + 4xy = 16$ $= 3x\left(\frac{16 - 3x^{2}}{4}\right) \mathbf{or} = 3x^{2}\left(\frac{16 - 3x^{2}}{4x}\right)$		2	$2(3x^2 + xy + 3xy) = 32 \text{ etc}$ AG be convinced
=	$\Rightarrow 3x^{2} + 4xy = 16$ $\Rightarrow 3x^{2}y \qquad \text{OE}$ $3x\left(\frac{16 - 3x^{2}}{4}\right) \text{or} = 3x^{2}\left(\frac{16 - 3x^{2}}{4x}\right)$		2	AG be convinced
=	$3x \left(\frac{16 - 3x^2}{4} \right) \mathbf{or} = 3x^2 \left(\frac{16 - 3x^2}{4x} \right)$	M1		
				correct volume in terms of x and y
				OE
=	$12x - \frac{9x^3}{4}$	A1	2	CSO AG be convinced that all working is correct
(b) $\left(\frac{\mathrm{d}V}{\mathrm{d}x}\right)$	$\left(- = \right) 12 - \frac{27}{4}x^2$	M1 A1	2	one of these terms correct all correct with 9×3 evaluated (no + c etc)
$(\mathbf{c})(\mathbf{i}) x = \mathbf{c}$	$\frac{4}{3} \Rightarrow \frac{dV}{dx} = 12 - \frac{27}{4} \times \left(\frac{4}{3}\right)^2$	M1		attempt to sub $x = \frac{4}{3}$ into 'their' $\frac{dV}{dx}$
$\frac{\mathrm{d}V}{\mathrm{d}x}$ =	$= 12 - \frac{27}{4} \times \frac{16}{9} = 12 - 12$			or $12 - \frac{432}{36} = 12 - 12$ or $12 - \frac{48}{4} = 0$ etc
$\frac{\mathrm{d}V}{\mathrm{d}x}$ =	$= 0 \Rightarrow$ stationary value	A1	2	CSO; shown = 0 plus statement
(ii)	$\frac{\mathrm{d}^2 V}{\mathrm{d}x^2} = -\frac{27x}{2} \qquad \text{OE}$	B1√		FT for 'their' $\frac{dV}{dx} = a + bx^2$
when	$n x = \frac{4}{3}, \frac{d^2V}{dx^2} < 0 \implies \text{maximum}$	E1√	2	or sub of $x = \frac{4}{3}$ into 'their' $\frac{d^2V}{dx^2}$ \Rightarrow maximum
FT	"minimum" if their $\frac{d^2V}{dx^2} > 0$			E0 if numerical error seen

				MPC1 - AQA GCE Mark Scheme 2012
પ તા				MPC1 - AQA GCE Mark Scheme 2012 . Comments
C1 Q	Solution	Marks	Total	Comments
5(a)(i)	$\left(x-\frac{3}{2}\right)^2$	M1		or $p = 1.5$ stated
	$\left(x-\frac{3}{2}\right)^2+\frac{11}{4}$	A1	2	$(x-1.5)^2 + 2.75$
	Mark their final line as their answer			
(ii)	$x = \frac{3}{2}$	B1√	1	correct or FT their " $x = p$ "
(b)(i)	$x^2 - 3x + 5 = x + 5 \Rightarrow x^2 = 4x$	M1		eliminating x or y and collecting like terms (condone one slip)
				or $(y-5)^2 - 3(y-5) + 5 = y$
	((0) 4	1		$\Rightarrow y^2 - 14y + 45 = 0$
	$ (x \neq 0) \qquad \Rightarrow x = 4 y = 9 $	A1 A1	3	
	$r^3 = 3r^2$	M1		one of these terms correct
(ii)	$\frac{x^3}{3} - \frac{3x^2}{2} + 5x(+c)$	A1 A1	3	another term correct all correct (need not have $+ c$)
(iii)	$\left[\right]_{0}^{4} = \frac{4^{3}}{3} - 3 \times \frac{4^{2}}{2} + 5 \times 4$	M1		must have earned M1 in part(b)(ii) $F(\text{their } x_B) \{-F(0)\}$ "correctly sub'd"
	$=17\frac{1}{3}$	A1		$\left(\frac{64}{3} - 24 + 20 = \right) \frac{52}{3} \text{ or } \frac{104}{6} \text{ etc}$
				condone 17.3 but not $16\frac{4}{3}$ etc
	Area trapezium = $\frac{1}{2} (x_B) (5 + y_B)$	B1√		FT their numerical values of x_B , y_B
	۷			Area = $\frac{1}{2} \times 4 \times 14 \ (= 28)$
	Area of shaded region = $28-17\frac{1}{3}$			
	$=10\frac{2}{3}$	A1	4	CSO; $\frac{32}{3}$, accept 10.7 or better
	Total		13	3

				MPC1 - AQA GCE Mark Scheme 2012
				MPC1 - AQA GCE Mark Scheme 2012 . That has been sold as the scheme and the scheme
)	Solution	Marks	Total	Comments
6(a)	$(x-5)^2 + (y-8)^2$	B1		
	= 25	B1	2	condone 5 ²
(b)(i)	$(2-5)^2 + (12-8)^2$			or $AC^2 = 3^2 + 4^2$
	= 9+16 = 25			hence $AC = 5$; (also radius = 5)
	\Rightarrow A lies on circle	B1	1	$(\Rightarrow radius - AC) \Rightarrow A \text{ lies on sirely}$
				\Rightarrow radius = AC \Rightarrow A lies on circle (must have concluding statement & RHS)
	(must have concluding statement and			of circle equation correct or $r = 5$ stated if
	circle equation correct if using equation)			Pythagoras is used)
(ii)	grad $AC = -\frac{4}{3}$	B1		
	3			
	Gradient of tangent is $\frac{3}{4}$	B1√		FT their –1/ grad AC
	y-12 = 'their tangent grad' (x-2)	M1		or $y =$ 'their tangent grad' $x + c$ & attempt to find c using $x = 2$, $y = 12$
	$y-12 = \frac{3}{4}(x-2)$ or $y = \frac{3}{4}x + \frac{21}{2}$ etc	A1		correct equation in any form
	4x + 4x + 42 = 0 $3x - 4y + 42 = 0$		~	CSO; must have integer coefficients with
	3x - 4y + 4z = 0	A1	5	all terms on one side of equation
				accept $0 = 8y - 6x - 84$ etc
(c)(i)	$(CM^2 =)$ $(7-5)^2 + (12-8)^2$	M1		or $(CM^2 =)$ 20
	$\left(\Rightarrow CM = \sqrt{20}\right) \Rightarrow \left(CM =\right) 2\sqrt{5}$	A1	2	
(ii)	$PM^2 = PC^2 - CM^2 = 25 - 20$	M1		Pythagoras used correctly
(11)	1 m - 1 C OM 25 25	1411		
				$eg d^2 + (2\sqrt{5})^2 = 5^2$
	$\Rightarrow PM = \sqrt{5}$	A1		
	Area $\triangle PCQ = \sqrt{5} \times 2\sqrt{5}$			
	= 10 Total	A1	3 13	CSO

				MPC1 - AQA GCE Mark Scheme 2012
1		7.5	70 ()	MPC1 - AQA GCE Mark Scheme 2012 . Marks Clock Comments
Q	Solution	Marks	Total	Comments
7(a)(i)	$\left \begin{array}{c} \left(\text{Increasing} \Rightarrow \right) \frac{dy}{dx} > 0 \\ 20x - 6x^2 - 16 > 0 \end{array} \right \text{ either}$	M1		correct interpretation of y increasing
	$\Rightarrow 6x^2 - 20x + 16 < 0$ or (2) $(10x - 3x^2 - 8) > 0$			must see at least one of these steps before final answer for A1
	$\Rightarrow 3x^2 - 10x + 8 < 0$	A1	2	CSO AG no errors in working
(ii)	(3x-4)(x-2)	M1		correct factors or correct use of quadratic equation formula as far as $\frac{10 \pm \sqrt{4}}{6}$
	CVs are $\frac{4}{3}$ and 2	A1		condone $\frac{8}{6}$ and $\frac{12}{6}$ here but not in final line
	$\begin{array}{c c} & & & & \\ \hline \frac{4}{3} & & & \\ \hline & \frac{4}{3} & & \\ \hline \end{array}$	M1		sketch or sign diagram
	$\frac{4}{3} < x < 2$	A1	4	or $2 > x > \frac{4}{3}$
	Mark their final line as their answer			accept $x < 2$ AND $x > \frac{4}{3}$ but not $x < 2$ OR $x > \frac{4}{3}$ nor $x < 2$, $x > \frac{4}{3}$

				MPC1 - AQA GCE Mark Scheme 2012 . The state of the state
PC1				Altho Cloud
Q	Solution	Marks	Total	Comments
7(b)(i)	$x = 2$; $\left(\frac{dy}{dx} = \right) 40 - 24 - 16$	M1		sub $x = 2$ into $\frac{dy}{dx}$ and simplify terms
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies \text{tangent at } P \text{ is parallel to}$	A1	2	must be all correct working plus statement
	the x-axis			
(ii)	$x = 3$; $\frac{dy}{dx} = 20 \times 3 - 6 \times 3^2 - 16$	M1		must attempt to sub $x = 3$ into $\frac{dy}{dx}$
	(=60-54-16) = -10	A1	1	
	Gradient of normal $=\frac{1}{10}$	A1√		$\frac{-1}{"their -10"}$
	Normal: $(y-1)$ = 'their grad' $(x-3)$	m1	1	normal attempted with correct coordinates
				used and gradient obtained from their $\frac{dy}{dx}$
	, ,		1	value
	$y + 1 = \frac{1}{10}(x - 3)$	A1		any correct form, eg $10y = x - 13$ but must simplify $$ to $+$
	(Equation of tangent at P is) $y = 3$	B1	1	
	<i>x</i> = 43	A1	7	$CSO; \Rightarrow R(43,3)$
	Total	+	15	+
	TOTAL	 	75	+